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There is no ground truth available to detect artifacts in unseen views so we leverage the training views (a). We 
extract patches from all training views and treat them as puzzle pieces (b). Using those puzzle pieces (patch-
es) we try to reasemble an unseen view (c). There will be similar pieces for faithful reconstructions (d) but no 
similar pieces will be found for artifacts (e). This yields a partial reconstruction of the unseen view, where 
missing pieces mark artifacts.

Current reconstruction techniques perform well 
when interpolating between training views once 
converged. However, scenes quickly fall apart when 
querying test views that do not fall onto the same 
training camera trajectory. Incongruent and unnatu-
ral artifacts become visible.
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The lack of corresponding puzzle pieces suggests the presence 
of artifacts!

Following Zhang et al., we compare patches in embedding space (rather than image space) as this aligns better 
with human judgement. Thus, one puzzle piece corresponds to a single feature vector of some layer. For every 
layer   , we compute the cosine similarity for every feature vector         of the unseen image with all feature vec-
tors       from all training images. We can compute this in parallel using an outer product. The final similarity 
score for a pixel in the unseen image is given by the maximum similarity to any training feature.

Every CNN backbone can be used to extract the embeddings. We also 
support the new Dinov3 backbones for an additional performance leap!
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One pixel in embedding 
space corresponds to a 
patch in the input domain.
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Artifacts and non-artifacts are linearly separable in our PuzzleSim maps. We propose an algorithm that 
thresholds the PuzzleSim maps, yielding outlier masks that we subsequently leverage, together with neural 
inpainting, to replace artifacts with more meaningful content. This process can be iterated until no further ar-
tifacts are detected.

Serious artifacts in converged scenes

We collected a dataset of 36 artifact-ridden ren-
derings over 12 challenging scenes, with varying 
artifact types and severities.  We asked 22 partici-
pants to mark all areas that they found to be un-
natural or unappealing, creating a binary mask 
(see the tool on the right). We estimated the proba-
blitiy of observing an artifact as the average 
across all segmentations. The dataset is available 
on Hugging Face. 

We compute pixelwise correlations between 
metric outputs and our collected human 
masks and find that our metric outperforms 
all competitors by a large margin.
Consequently, our error maps align much 
better with our human ground truth.
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$ pip install puzzle_sim

Get the data!

Training view interpolation looks good!

find best matching puzzle 
pieces using cos sim.

Source: visit.stanford.edu/assets/cardinal/images/explore-campus/architecture-landscape.jpg

Metric Pearson Spearman

PAL4VST [Zhang, ICCV’23] 0.078± 0.112 0.062± 0.085
CNNIQA [Kang, CVPR’14] 0.144± 0.247 0.130± 0.253
PIQE [Venkatanath, NCC’15] 0.292± 0.222 0.268± 0.221
PaQ-2-PiQ [Ying, CVPR’20] 0.402± 0.178 0.349± 0.225

CrossScore [Wang, ECCV’24] 0.510± 0.204 0.378± 0.209
PuzzleSim (ours) 0.615± 0.120 0.474± 0.137
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